Sunday, November 8, 2015

সরল ও যৌগিক হাইপোথিসিস কাকে বলে?

Advertisements


সরল হাইপোথিসিসঃ

θ প্যরামিটারের কোন বিন্যাস (distribution) থেকে একটি দৈব নমুনা (random sample) নেওয়া হলে যে সমগ্রক (population) থেকে নমুনাটি নেওয়া হল, কোনো হাইপোথিসিস যদি তার বিন্যাসকে এককভাবে (একটি মাত্র উপায়ে) ও সুনির্দিষ্ট করতে পারে, তবে হাইপোথিসিসটিকে সরল (simple hypothesis) বলা হয়।

যৌগিক হাইপোথিসিসঃ

যে হাইপোথিসিসটি সরল নয়, সেটিই হল যৌগিক হাইপোথিসিস (composite hypothesis)।

উদাহরণঃ

মনে করি $X_1, X_2, ..., X_n$ হল সূচকীয় বিন্যাস (exponential distribution) থেকে আসা একটি দৈব নমুনা, যার প্যারামিটার হল θ। তাহলে H: θ = 3 হাইপোথিসিসটি কি সরল, নাকি যৌগিক?

সমাধানঃ
সূচকীয় বিন্যাস থেকে আসা চলকের (variable) সম্ভাবনা ঘনত্ব ফাংশন (probability density function) হলঃ
$f(x) = \frac{1}{\theta}e^{-x/\theta}$ যেখানে x ≥ 0। 

H: θ = 3 হাইপোথিসিসের জন্যে ফাংশনটি হবে এ রকমঃ
$f(x) = \frac{1}{3}e^{-x/3}$ যেখানে x ≥ 0। 

যেহেতু উল্লেখ্য হাইপোথিসিসের জন্যে আমরা বিন্যাসটিকে এককভাবে সুনির্দিষ্ট করতে পেরেছি, তাই এটি হল সরল হাইপোথিসিস।


উদাহরণঃ

মনে করি $X_1, X_2, ..., X_n$ হল সূচকীয় বিন্যাস (exponential distribution) থেকে আসা একটি দৈব নমুনা, যার প্যারামিটার হল θ। তাহলে H: θ > 2 হাইপোথিসিসটি কি সরল, নাকি যৌগিক?

সমাধানঃ

আগের মতোই এর সম্ভাবনা ফাংশন হলঃ
$f(x) = \frac{1}{\theta}e^{-x/\theta}$
যেখানে x ≥ 0। 

H: θ > 2 হাইপোথিসিসের অধীনে একে এভাবে লেখা যেতে পারেঃ
$f(x) = \frac{1}{3}e^{-x/3}$ যেখানে x ≥ 0

আবার এভাবেও লেখা যেতে পারেঃ
$f(x) = \frac{1}{8}e^{-x/8}$ যেখানে x ≥ 0

বাস্তবে এখানে সম্ভাবনা ফাংশনকে অসীম সংখ্যক উপায়ে লেখা সম্ভব, একটি মাত্র উপায়ে নয়। তাই এটি যৌগিক হাইপোথিসিস।

উদাহরণঃ

মনে করি $X_1, X_2, ..., X_n$ হল পরিমিত বিন্যাস থেকে আসা একটি দৈব নমুনা। এর গড় (mean) μ ও ভেদাঙ্ক (variance) $σ^2$। 
তাহলে H: μ = 12 হাইপোথিসিসটি কি সরল, নাকি যৌগিক? 

সমাধানঃ

পরিমিত চলকের সম্ভাবনা ঘনত্ব ফাংশন হলঃ
$f(x)= \frac{1}{\sigma\sqrt{2\pi}} exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right]$
যেখানে −∞ < x < ∞ and σ > 0। 

H: μ = 12 হাইপোথিসিসের অধীনে এর মান হলঃ
$f(x)= \frac{1}{\sigma\sqrt{2\pi}} exp \left[-\frac{(x-12)^2}{2\sigma^2} \right]$
যেখানে −∞ < x < ∞ and σ > 0। 

এখানে এর গড় সুনির্দিষ্টভাবে উল্লেখিত আছে ঠিকই, ভেদাঙ্ক ($σ^2$) কিন্তু নেই। অতএব, এরও অসীম সংখ্যক বিন্যাস সম্ভব। ফলে পরিমিত বিন্যাসের ক্ষেত্রে H: μ = 12 হল যৌগিক হাইপোথিসিস। 


সূত্রঃ
১। https://onlinecourses.science.psu.edu/stat414/node/307

আব্দুল্যাহ আদিল মাহমুদ

লেখকের পরিচয়

আব্দুল্যাহ আদিল মাহমুদ। প্রভাষক, পরিসংখ্যান বিভাগ, পাবনা ক্যাডেট কলেজ। এর আগে রিসার্চ অ্যাসিস্ট্যান্ট হিসেবে কর্মরত ছিলেন EAL-এ। পড়াশোনা ঢাকা বিশ্ববিদ্যালয়ের পরিসংখ্যান বিভাগে। সম্পাদনা করছেন Stat Mania বিশ্ব ডট কম। পাশাপাশি লিখছেন বিজ্ঞানচিন্তা, ব্যাপন পাই জিরো টু ইনফিনিটিসহ বিভিন্ন ম্যাগাজিনে। অসীম সমীকরণ মহাবিশ্বের সীমানা নামে দুটি বই লেখার পাশাপাশি অনুবাদ করেছেন অ্যা ব্রিফার হিস্ট্রি অব টাইম । লেখকের এই সাইটের সব লেখা এখানে ফেসবুক | পারসোনাল ওয়েবসাইট

1 comments:

Write comments
Travis Smith
AUTHOR
April 22, 2018 at 5:37 AM delete

It's hard to find experienced people in this particular topic, but you sound like you know what you're talking about! Thanks outlook login

Reply
avatar